Two million times sharper than human vision
Quasar 3C 279 (Artist's Impression)
ESO/M. Kornmesser
VLBI is a means of linking telescopes together in a way that basically creates a single huge telescope as large as the distance between the telescopes (there’s a good primer on VLBI in our previous coverage of the Event Horizon Telescope, which aims to use VLBI to create a virtual telescope the size of planet Earth). Doing so requires a lot of technological backbone--atomic clocks to sync up the observations at geographically disparate telescopes, high rates of data transfer, computational capacity to process large loads of data streaming in from various sources around the globe--and this most recent observation shows just how far the astronomical community has come on this front. The galaxy 3C 279 (astronomers actually classify it as a quasar because it shines extremely brightly as material falls into its supermassive black hole) in the constellation Virgo is 5 billion light-years from Earth, yet astronomers were able to resolve details down to 1 light-year or less. The observations were made at a wavelength of 1.3 millimeters, the shortest wavelengths ever used to image at such long baselines.
VLBI in Action: ESO/L. Calçada
That’s important for a further reason. APEX shares both its geographic home and a lot of its technology with ALMA, the Atacama Large Millimeter/submillimeter Array, a huge new 66-antenna radio telescope that is still under construction and that when complete will multiply the observational potential of global VLBI by an order of magnitude. Astronomers intend to use ALMA and other telescopes around the world to image all kinds of cosmic features in unprecedented detail, including the black hole at the center of our own galaxy. That’s why the observation of 3C 279 is such a big deal: while record-setting in its own right, it’s just the beginning of what’s possible.
http://youtu.be/0dwkKzs5nn4
No comments:
Post a Comment