An automated system that detects when online pupils are distracted or snoozing and then uses tricks to keep them alert
WE ALL remember dozing off during a
boring class at school. A robotic teacher that monitors students'
attention levels and mimics the techniques human teachers use to hold
their pupils' attention promises to end the snoozing, especially for
students who have their lessons online. Tests indicate the robot can
boost how much students remember from their lessons.
Intelligent tutoring systems that use
virtual teachers to interact with students could play a crucial role in
the expanding field of online education. The trouble with online courses
is that it is usually impossible to know whether the student is
concentrating and engaging with the lesson. Unlike virtual teachers,
human teachers have a series of tricks for keeping their classes focused
- changing the pitch or tone of their voice, for example, or gesturing
to emphasise points and engage with their audience. Bilge Mutlu
and Dan Szafir at the University of Wisconsin-Madison wanted to find
out whether a robot could use some of the same techniques to improve how
much a student retains.
"We wanted to look at how learning
happens in the real world," says Mutlu. "What do human teachers do and
how can we draw on that to build an educational robot that achieves
something similar?"
The pair programmed a Wakamaru humanoid robot
to tell students a story in a one-on-one situation and then tested them
afterwards to see how much they had remembered. Engagement levels were
monitored using a $200 EEG sensor to monitor the FP1 area of the brain,
which manages learning and concentration. When a significant decrease in
certain brain signals indicated that the student's attention level had
fallen, the system sent a signal to the robot to trigger a cue. "We
can't do it just at any given moment, we have to try and do it like
human teachers do," says Mutlu.
The robot teacher first told a short
story about the animals that make up the Chinese zodiac, in order to get
a baseline EEG reading. Next, the robot told a longer 10-minute story
based on a little-known Japanese folk tale called My Lord Bag of Rice, which the student was unlikely to have heard before.
During this story the robot raised its
voice or used arm gestures to regain the student's attention if the EEG
levels dipped. These included pointing at itself or towards the
listener - or using its arms to indicate a high mountain, for example.
Two other groups were tested but the robot either gave no cues, or
sprinkled them randomly throughout the storytelling. Afterwards, the
students were asked a few questions about the Chinese zodiac to distract
them before being asked a series of questions about the folk tale.
As the team had expected, the students
who were given a cue by the robot when their attention was waning were
much better at recalling the story than the other two groups, answering
an average of 9 out of 14 questions correctly, as compared with just 6.3
when the robot gave no cues at all. The results were presented at the
Conference on Human Factors in Computing Systems in Austin, Texas,
earlier this month.
The idea of recapturing students'
waning attention in this way would have "significant implications for
the field of education", says Andrew Ng, director of Stanford University's Artificial Intelligence Lab in California and co-founder of online classroom Coursera.
It offers free courses from Stanford, Princeton University, the
University of Michigan and the University of Pennsylvania, and has
already attracted more than a million students since its launch last
month.
"One-on-one tutoring has been
repeatedly shown to give dramatic results in student learning, but the
main problem with it is the cost, and that it's just difficult to
scale," Ng says. "The vision of automatically measuring student
engagement so as to build a more interactive teacher is very exciting."
No comments:
Post a Comment